General Three-Body Problem
Introduction – Description, History, and Practicality of General Three-Body Problem
The three-body problem is a classic astronomical and physical problem which naturally follows from the two-body problem first solved by Newton in his Principia in 1687.  Since its initial consideration many scientists and mathematicians have considered this problem and with good reason as the motion of the Earth and other planets around the Sun is not strictly a two-body problem: indeed many scientists in the 18th Century explored this problem as they worried that the extra forces from other planets might cause the Earth, which they believed to be only a few millennia old, to alter its orbit and either plunge into the sun or fly off into outer space.
  However, despite centuries of exploration, there is no solution to the general three-body problem as there are no coordinate transformations that can simplify the problem; unlike the two-body problem or the restricted three-body problem (a problem in which one of the masses is negligible compared to the other two masses) because the vectors of the mutual forces do not line up with the center of mass, the motion of each body has to be considered along with the motions of the other two bodies.
  While some, namely Sundman in 1912, have created series expansions to solve the general problem, due to the poor convergence of these expansions we can see that the problem is a good example of chaos in nature and can only be simulated through numerical integration.
  Still, owing to the astrophysical importance of the three-body problem, many continue to explore this problem, create simulations, and look for special situations. 

One such special case is the Pythagorean problem explored by Barrau in 1913: in this problem the masses are set as 3, 4, 5 and they are set at the corners of the Pythagorean right triangle.
  

[image: image32.png]



While the bodies start at rest, when released they approach one another, have a close encounter and then recede after which one of the bodies flies off and the remaining two form a binary. 
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Later work showed that this behavior was quite typical of initially bound three-body systems: after close-two body approaches, the third body flies off.
  Even strongly interacting three-body systems have a limited lifetime and we so we do not expect to find many in nature.  Nevertheless, I decided to first model the interactions of the general three-body problem using the Pythagorean Problem as the principle example.
  

Equations of Motion – General Three-Body

In order to study the general three-body problem I solved for the equations of motion of each particle.  By considering Newton’s Second Law where the force affecting each object i was:
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And, 
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I found:
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These second order differential equations can be broken down into a system of coupled first order differential equations; see Appendix A for equations of motion for the full system.

In order to reduce the solutions from an 18-dimensional state space to a simpler 12-dimensional state space, the three-bodies were considered co-planar.  Working in Cartesian coordinates, this simplified my solution to equations in x and y. 

Using Matlab and the ode45 differential equation solver (Runge-Kutta numerical approximation method) with a relative and absolute error tolerance of 1x10^-10 we were able to solve for the solutions of the particles.  Given, however, that the third particle escapes the binary around t ≈ 59, only the motion for t < 70 is of any pictorial interest; for t > 70 the motion of the three particles can be accurately approximated by a binary and a third body whose centers of mass move linearly independent of one another (see above figure).  

Chaos in the General Three-Body Problem – Numerical/Simulations


In order to examine the chaotic nature and sensitive dependence of the general three-body problem I examined the leading Lyapunov exponent of the flow.  By launching two sets of particles with extremely similar initial conditions
 I found the Lyapunov exponent by looking at the rate of change of the log of the sum of the distances between like points with respect to time – i.e. I found the Lyapunov exponents by taking the average slope of the log of the distances between like points.
 

Given that initially bounded three-body systems, like those in the Pythagorean problem and most other three-body problems, devolve into a binary and an escaping third particle
 I only wanted to find the rate of change of the log of the sum of the distances between like points with respect to time for times when the three bodies are closely interacting.  In the Pythagorean Problem, the problem I studied in particular, the body escapes at t ≈ 59, so we only considered the rate of change of the log of the sum of the distances between like points for t < 59.  Furthermore, because the system takes a while to settle into its characteristic motion, we also only considered t > 31.  Considering 31< t < 59 we found that the slope of the log of the sum of the distances to be ≈ 0.4211 so we concluded that the leading Lyapunov exponent is ≈ .4211.  This agrees fairly well with the literature which claims that the leading Lyapunov exponent is typically ≈ ½.  
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Note how the log of the distance between the like points exceeds O(1), this characterizes sensitive dependence and chaotic behavior.

Escape in the General Three-Body Problem


As I alluded to before, the three-body problem often breaks down into a binary and an escaping third body and I wanted to better understand the conditions for escape.  It turns out the one can find a useful indicator of escape in the Lagrange-Jacobi identity:

          
[image: image7]

Since the moment of inertia describes the “compactness” of the system, if the moment of inertia grows bigger and bigger a greater sphere is required to surround the system and so when I’’ > 0 the bounding sphere expands at a greater and greater rate.  In practice, therefore, I’’ > 0 usually indicates the escape of a body.
  I calculated the I’’ for the Pythagorean problem and noted that the escape of the third body from the system occurred at around the same time that I’’ spiked to be persistently greater than zero.
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Note how escape occurs around t ≈ 59 and that I’’ >> 0 for t ≈ 59.
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For a proof of the Lagrange-Jacobi identity, see Appendix B.

Restricted Three-Body Problem

Equations of Motion – Restricted Three-Body Problem 


The restricted three-body problem is a problem where one of the mass of one of the bodies (the “third body”) is negligible with respect to the mass of the two bodies (the “primaries”) and the restricted three-body problem can serve as a good model for a system composed of a star, planet and asteroid or satellite (as the mass of the asteroid/satellite << mass of planet or star we can see that this is a restricted three-body problem).  In order to investigate this problem, we considered the restricted three-body problem
 in a rotating inertial reference frame.


The inertial reference frame is set up such that the origin is the center of mass, and such that the reference frame rotates at the same speed as the binary system composed of the primaries (e.g. a star and a planet); in such a frame the primaries remain fixed while the third body (e.g. a satellite or asteroid) rotates about them.  We set up the frame so that the primaries are separated by a scaled distance of 1 unit with the heavier primary (e.g. the star) resting μ
 units away from the origin with both on the horizontal axis and the position of the third body is given by (ξ, η):
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The equations of motion for third body are given by the following equations of motion:
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Where:
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These second order differential equations can be broken down into a system of coupled first order differential equations.  For a more complete derivation of the equations of motion in the rotating frame and for the system of coupled first order differential equations, see Appendix C. 

Lagrangian Points – Their Location and Stability
One interesting aspect of the three body problem is the presence of Lagrangian points as they are extremely applicable to planetary modeling.  Lagrangian points, or libration points, are the “five positions in an orbital configuration where a small object affected only by gravity can theoretically be stationary relative to two larger objects.”
  For the restricted three-body problem we can see these points as the places where, in the rotating reference frame with the same period as the two co-orbiting primaries, the gravitational force balances the centrifugal force allowing the third body to be a rest with respect to the first two bodies.

Lagrangian points are located where:
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Following the derivation in Appendix D we see that the Lagrangian points are found where:
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And where:
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When η = 0 the first equation gives the following three conditions:
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And when η ≠ 0 the second equation gives:
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The points which obeying the first equation for η = 0 are the third Lagrange points or “L3” points, the points obeying the second equation for η = 0 are the first Lagrange points or “L1” points, and the points obeying the third equation for η = 0 are the second Lagrange points, or “L2”.  The points obeying the equation for η ≠ 0 are L4 when η = ½*√3 and L5 when η =   -½*√3.  Note how L4 and L5 lie at the corners of equilateral triangles formed by the Lagrange points and the two primaries.
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We can examine each of these points’ stability.
  By following the derivation in Appendix D we can see, by contradiction, that L1, L2, and L3 are unstable and that for μ < .0385, L4 and L5 are stable.  We can also numerically examine their stability by finding their Lyapunov exponents. 
The following graph shows the Lagrange points destabilized by slight amounts:
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The following at plots of particles displaced from the Lagrange points by 0.1% of their initial position and allowed to flow for 100 time steps.  Note how the points displaced near L4 and L5 stay near L4 and L5 respectively; also note how the point displaced from L3 moves away from L3 more slowly than the points displaced from L2 and L1 – we will see this slower movement manifest itself in the Lyapunov exponents for L3 vs. L2 and L1 shortly.

Chaos in Rotating Frame and at Lagrangian Points


In order to evaluate the stability/instability of the Lagrange points I found the Lyapunov exponents of the Lagrange points both by determining the Df matrix of the system of equations and finding the eigenvalues of that matrix at the Lagrange points and by launching two points with similar initial conditions and then measuring the rate of change of the log of the distance between the two points. 


Despite the motion of the points within the rotating frame being a flow, the eigenvalues of the Df matrix evaluated at certain points matrix still give the Lyapunov exponents.
  By examining the Df at the Lagrange points I found the eigenvalues for the Lagrange points and therefore the Lyapunov exponents to be as follows:
[image: image20.emf]
L1, L2, and L3’s positive real eigenvalues confirm my belief that they are unstable, while L4 and L5’s purely imaginary eigenvalues confirm my belief that they are stable.  For a complete description of the Df matrix, see Appendix E. 


I also examined the Lagrange points’ stability/instability by determining the leading Lyapunov exponents of the flows near the points.  I determined the Lagrange points leading Lyapunov exponents by launching two particles, one from the Lagrange point and another from a point slightly perturbed from the Lagrange point, and then measuring the rate of change of the log of the distances between the two points before they leave the neighborhood of the Lagrange point.
  While this only approximated the leading Lyapunov exponents, I was able to get fairly good results.


For the second and third Lagrange points I found these points were indeed unstable – they exhibited sensitive dependence and had a positive leading Lyapunov exponent. I found that the log of the distance between the points exceeded O(1) and that the distance increased exponentially in time (i.e. the log of the distance increased linearly).  I also noticed that approximations of the leading Lyapunov exponents for L2 and L3 were very near the exact solutions I solved for by taking the eigenvalues of the Df matrix evaluated at L2 and L3.
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Plot for L2.

Note how the approximated leading Lyapunov exponent, h ≈ 2.1545 is very near the exact leading Lyapunov exponent = 2.3521
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Plot for L3.

Note how the approximated leading Lyapunov exponent, h ≈ 0.494 is very near the exact leading Lyapunov exponent = 0.05

For the fourth and fifth Lagrange points I found that these points were stable – they did not display sensitive dependence and the log of the distance between the points did not exceed O(1) [the log distance between the points grew initially but then stabilized at a distance less that O(1)].
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Note how log of the distance between the points asymptotes at less that O(1).  This is due to the purely imaginary roots of the Df matrix evaluated at L4 and L5.  Also note how the points at L4 and L5 behave in the same way.

For the first Lagrange point, however, I found that this point did not display as much sensitive dependence as expected – the log of the distance between the points did not exceed O(1).  Nevertheless, our analysis of the eigenvalues of the Df matrix evaluated at L1 suggest sensitive dependence – I was not able to resolve this discrepancy.  
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Stability of other points in the Rotating Inertial Frame

In addition to the Lagrange points I also hoped to analyze the stability of other points within the Rotating Inertial Frame.  I iterated over points within the plane and launched particles from slightly perturbed initial conditions.
  By measuring the rate of change of the log of the distance between the two particles I hoped to find the leading Lyapunov exponents for a set of points that spanned the plane.  Because I did not know over which time intervals I should measure the rate of change of the log of the distance I was unable to get the leading Lyapunov exponents for a variety of initial conditions.  Nevertheless, I have attached the code for the reader’s reference, the file is LyapExpRot_vs_ICs.m.
Lagrangian Points – Their Application

Lagrangian points are extremely useful and have many applications in both nature and technology.  In our solar system we can see the stability of Lagrangian points most poignantly in the “Trojan” asteroids that are in the zone of stability about the Lagrangian points of the Sun-Jupiter system: 




[image: image26]

Note how the Trojan asteroids, which have stable orbits congregate at the L4 and L5 points, the points which form equilateral triangles with Jupiter and the Sun as the other two points.  

Conclusions

From our study of the General Three-Body problem and the Three-Body problem within a rotating reference frame we can make the following conclusions about the three-body problem.  The typical three-body problem with bounded initial conditions (as exemplified by the Pythagorean Problem) displays chaotic behavior and sensitive dependence.  In the rotating reference frame, however, there are stable fixed points, the Lagrangian points.  The Lagrangian points, L1, L2, and L3 also are unstable fixed points while the Lagrangian points L4 and L5 are stable.  We can see a natural application of this in the Trojan asteroids which are in the L4 and L5 locations of the Sun-Jupiter system.
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� Valtonen, 1


� Valtonen, 2


� Valtonen, 2


� Valtonen, 3


� Valtonen, 3


� Given that the Pythagorean Problem has behavior quite typical of initially bound three-body problems, analyzing this particular example seemed sensible.  


� The state of the three-body system can be described by the position and velocity vectors of each particle.  In two dimensions each vector has two components so each particle can be described by 2+2 = 4 components; the two-dimensional three body problem lives in 12-D state space as 4*3 = 12.  In three dimensions each vector has three components so each particle can be described by 3+3 = 6 components; the three-dimensional three body problem, therefore, lives in 18-D state space as 6*3 = 18.  The two problems, however, are mathematically identical.  


� The perturbed points were perturbed by 0.0001% in the +x and the +y directions; in order to solve for the positions of each particle I used ode45 with relative and absolute error tolerances of 1x10^-10.  Code for this is LyapunovExpGen.m


� By like particles we mean that we take the sum of the distances between the particles that we started at similar initial conditions. 


� Valtonen, 3


� Valtonen, 33


� Valtonen, 33


� Solved for motion of the particles using ode45 with relative and absolute error tolerances of 1x10^-10.  Code for this is SimplisticProject2.m


� Derivation of Lagrange-Jacobi identity from Valtonen, 32-33.


� The “restricted” three-body problem refers to the problem where the third body has negligible mass compared to the other two bodies and where the primaries move in a circular orbit and the asteroid is assumed to move in the same plan as the primaries (Valtonen, 115).  


� Due to the scalability of the three-body problem we can scale whatever system we’re interested in to fit these parameters (Valtonen, 34).  μ = mass of planet or smaller primary / total mass of primaries.  For the Sun-Jupiter system, μ ≈ 0.001.


� The non-rotating frame (inertial sidereal frame) is given by the ξη coordinates and the rotating synodic frame is given by the ξη frame (Valtonen, 116).


� Valtonen, 119


� “Lagrange Point,” Wikipedia


� “Lagrange Point,” Wikipedia


� Following derivation from Valtonen, 123-125 


� “Lagrange Point,” Wikipedia


� Derivation of Lagrange points’ stability from Valtonen, 125-129


� For this mu ≈ 0.001, I used ode45 with and absolute error tolerances of 1x10^-10.  Code for this is in RotProject.m


� As this Df matrix is an approximation for the time-1 map.  


� The perturbed points were perturbed by 0.0001% in the +x and the +y directions and mu ≈ 0.001; in order to solve for the positions of each particle I used ode45 with relative and absolute error tolerances of 1x10^-13.  Code for this is LyapunovExpRot.m


� Initial conditions were perturbed by 0.0001% in the +x and the +y directions.


� “Jupiter Trojan,” Wikipedia
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